

基于激光红外吸收光谱的高精度 NOx 测量 系统

用户手册

公司:成都诺为光科科技有限公司 地址:四川省成都市武侯区领事馆路7号保利中心南塔603室 电话:028-65239713 传真:028-65239713 邮箱:novaphoton@163.com 邮编:610041 网址:www.novaphoton.com 1、简介

本系统采用 QCLAS(QCL 激光吸收光谱)技术,实现多组分氮氧化物 (NO₂, NO,N₂O) 的浓度在线监测。测量精度可达 100ppbv 量级。由于气体分子在红外 波段具有光谱吸收特性,并且不同的成分具有不同的吸收中心峰,这样,通过红 外光谱吸收法检测气体,不仅可以测量气体的浓度,还可以通过气体独有的"吸 收光谱指纹",判断气体的成分。近年来,随着量子级联激光器 (QCL) 技术的 飞速发展,一种新的气体测量技术: QCLAS 也应运而生。QCLAS 采用 QCL 作 为光源进行气体检测,具有以下突出优点:1:可以提供超宽的光谱范围 (mid IR to THz)。2: 极好的波长可调谐性。3: 高功率与高稳定性。4: 窄线宽。通过合 理选择波长,可以完成多种氮氧化合物成分的测量,包括:

- ◆ NO: 测量波长 5.26um
- ◆ N₂O: 测量波长 4.53um
- ◆ NO₂: 测量波长 6.13um

注意事项

2、系统原理图

本系统采用三套 QCL 激光源,实现三类氮氧气体成分的浓度测量,激光通 过红外光学元件进行准直和传输,经过共孔径发射器合成为一束对外输出,经过 充满了待检气体的区域之后,激光被红外探测器阵列所收集。测气光路的构建形 式有两种:

开放光路:多用于工程化实施现场,如有害气体遥感,污染气体检测;

多次反射气池:多用于实验室分析应用,实现极低浓度气体的定量测量。
 三套激光器独立并行工作,通过DC分析或谐波分析,将光强信号转换为吸收数值,在监控软件中进行实时显示。三套系统完全独立、互不影响。经过样气标定,即可实现吸收数值到待测气体浓度之间的转换,从而实现浓度测量。

3、 使用方法

3.1 软件安装*1

软件安装步骤如下:

- 插入软件光盘, 打开"三通道 NOx 气体测量软件安装"文件夹;
- 双击 "setup.exe"图标;
- 按提示完成软件安装;
- 安装完成后,请在 WINDOWS 开始菜单下找到软件图标:

三通道NOx气体测量软件	
▶ 所有程序	
搜索程序和文件	关机 ▶

双击即可开启软件。

注:
*1 安装软件前,请关闭所有杀毒软件或管家类监控软件,否则极易出现安装报
错。
*2 建议上位机使用 WINDOWS 7 及以上操作系统。

3.2 软件使用说明

点击软件图标, 弹出如图所示界面。软件界面分为两个部分, 第一部分为 探测器原始波形显示区域; 剩余部分为三种气体 (NO, NO₂, N₂O) 浓度的测量 界面,下面以 NO 为例对软件界面中的功能进行简述 (其余气体测试模块功能相 同)。

序号	功能项	简介
1	锯齿波频率	设置加载至 QCL 上的锯齿型电压信号频率, 默认设置为 50Hz。
2	设备名	设置软件通信的设备名称,默认设备名为 Dev1。
3	探测器原始波形	实时显示加载至 QCL 上的锯齿型电压信号强度随时间的关系曲线,电压信号峰-谷值通过序号 6 和序号 7 输入框进行设置。
4	调制波形	分时显示三种不同幅值的锯齿型电压波形关系,其中黄色曲线代表 N2O 电压、蓝色曲线代表 NO 电压、紫色曲线代表 NO 电压。

成都诺为光科科技有限公司 www.novaphoton.com

5	加载电压按钮	开启时(绿色)给QCL加载电压信号,并开始采集PD电信号,
		关闭时为灰色;每次更改电压参数后都需要重新按下此按钮以使
		新的参数生效。
6	锯齿波最大值	设置锯齿波最大幅值,即信号峰值。
7	锯齿波最小值	设置锯齿波最小幅值,即信号谷值。
8	锯齿波低通频率	设置锯齿波低通频率,此值与锯齿波频率相关,一般设置为锯齿
		波 10 倍左右值。请注意三个通道的该值不要设置成一样,要有
		少许差别。
9	正弦波频率	设置正弦波频率。
10	正弦波幅值	设置正弦波幅值。
11	实时光强	实时显示从 PD 上采集的光电信号强度。
12	浓度信号	实时显示通过直流测量或谐波测量计算后的气体浓度信号强度。
13	ROI 滑块	通过调节左右滑块位置来筛选需要进行直流测量或谐波测量的
		感兴趣区域 (ROI)。
14	测量模式	下拉复选框,用于直流测量模式和谐波测量模式的切换。
15	显示模式ZOOM	用于放大显示 ROI 信号波形。
16	平均值	实时显示测量过程中气体浓度的平均值。
17	提取背景	提取背景信号强度曲线作为对照,仅用于直流测量模式。
18	直流滤波频率	用于设置 DC 测量信号的滤波频率。
19	清除背景	清除背景信号强度曲线,仅用于直流测量模式。
20	测量结果显示	实时显示测量过程中气体浓度的变化曲线,横坐标为采样点计
		数,纵坐标为气体浓度值。
21	实时浓度显示	显示实时浓度。
22	测量	测量开始按钮,点下时开始测量;再次点击,测量结束。

基于激光红外吸收光谱的高精度 NOx 测量系统 用户手册

23	清空	清空测量结果按钮,点下时清空当前内存中的测量数据。
24	保存	将内存中的测量结果保存进行保存,点击后弹出对话框,可以通 过增加命名后缀,如.txt,.xls等,确定文件格式。
25	保存设置	保存当前软件设置参数,仅在输出关闭时可用。
26	载入设置	载入已有的设置参数文件,仅在输出关闭时可用。

3.3 激光器主机使用说明

激光器主机的前面板如下图所示。

前面板从左至右,分为三个测量通道,分别对应为NO₂(红色虚线框)、NO(黄色虚线框)、N₂O(蓝色虚线框)三种气体浓度测量,每个通道按键的功能相同,现以N₂O测量通道为例(如下图)进行功能说明:

序号	功能项	简介
1	TEC 开关	开启/关闭温控模块 (TEC),拨钮向上为、向下为关闭。
2	LDC 开关	开启/关闭恒流源 (LDC),拨钮向上为、向下为关闭。
3	OUTPUT 开关	加载/关闭激光器电源,拨钮向上为、向下为关闭。
4	TEC MONITOR	TEC 模块状态显示屏: 第一行 TC1 显示依次代表,激光
		器设定温度、激光器实时温度和 TEC 开闭状态; 第二行
		TC2 为外壳监测温度; 第三行为错误计数, 正常状态下
		显示数值为"0"; 第四行为 PCB 板实时温度。
5	TEC OUTPUT 指示灯	TEC 正常工作时亮起。
6	TEC POWER 指示灯	TEC 供电正常时亮起。
7	TEC SET	TEC 温度设置键: 短按 SET 键可以对激光器的温度进行
		设定;长按 SET 键三秒钟对设定的温度进行保存。
8	TEC EXIT	TEC 设置退出键: 短按 EXIT 键可退出 TEC 温度设置。
9	LDC MONITOR	LDC 模块状态显示屏: 第一行 LD1 显示依次代表激光器
		工作阈值电流、激光器实时电流和 LDC 开闭状态; 第二
		行 QS1 为恒流源工作模式, 默认显示为 CW High; 第三
		行为错误计数,正常状态下显示数值为"0";第四行常显
		SYSTEM。
10	LDC OUTPUT 指示灯	LDC 正常工作时亮起。
11	LDC POWER 指示灯	LDC 供电正常时亮起。
12	LDC SET	此功能在出厂时已完成设置,通常不需要更改。
13	LDC EXIT	此功能在出厂时已完成设置,通常不需要更改。

3.4 实施一次完整的测量实验

本节将介绍一次完整测量实验的实施步骤。

1) 硬件连接

- 完成上位机和激光器之间的 USB 连接, USB 接口在激光器主机的左侧方位置。
- 完成光电探测器与激光器之间的连接,其中信号部分采用 SMA 连接,电源 部分采用雷莫线连接。
- 按需求构建好测气光路系统。

2) 开机操作

- 打开激光器主机前面板中的"TEC"按钮, TEC"POWER"灯率先变绿, 在红色"ERROR"灯闪烁 0.5~1s 后, TEC"OUTPUT"灯亮起变绿。观察"TEC MONITOR"显示屏中的第一行第二列温度数值开始变化,逐渐逼近设置值 (第一行第一列温度值)。当两者相等时 TEC 达到工作点。
- 打开激光器主机前面板中的"LDC"按钮,LDC"POWER"灯率先亮起变
 绿,在红色"ERROR"灯闪烁 0.5~1s 后,LDC"OUTPUT"灯亮起变绿,
 LDC模块进入工作状态。
- 打开激光器主机前面板中的"OUTPUT"按钮, QCL 进入待命状态。
- 根据测试需要可选择开一路、二路或三路 QCL, 三路 QCL 通道相互独立,
 可分别操作,操作步骤与上述相同。
- 改变温度可以改变激光器波长,从而微调谐波或吸收峰的位置。可通过前面 板对激光器温度参数进行设置,具体的设置方法如下:
 - 短按 "SET" 键一次,进入温度设置界面。
 - 在Adjust T 处, 短按"SET"键一次, 条目文本变白。

- 旋转"SET"旋钮进行温度调节,直到满足需求为止。
- 完成设置后长"SET"键3秒钟后保存生效。

3) 参数设置

- 打开测试软件,单击运行,软件开始工作。
- 依次检测并设置下列参数:
 - "锯齿波频率", 默认设置为 50Hz。
 - "设备名",下拉框选项中可以选中当前的通信设备,默认设置为 Dev1。
 - "锯齿波最大值"和"锯齿波最小值",此值根据实际情况进行设置,与
 待测气体种类相关。
 - "锯齿波低通频率",约为锯齿波频率的10倍左右,请保证三通道的该 值不同。
 - "正弦波频率", 默认设置为 21k。
 - "正弦波幅值", 默认设置为 40m。
- 完成设置可在"实时光强"XY框图中观察到QCL经气体吸收后的吸收波形, 微调锯齿波参数使得吸收波形呈现清晰明锐的状态,如下图显示状态。

观察吸收波形,根据吸收波形的特征选择测量模式:对于气体吸收峰窄于
 QCL 调谐范围的情形,可以选择谐波测量,对于气体吸收峰范围完全覆盖

QCL 调谐范围的情形,可以选择直接测量。测量模式选择由点击"测量模式" 下拉按钮复选完成。

在谐波测量模式下,"浓度信号"XY坐标图中会出现二次谐波信号波形, 如下图所示。细微调节正弦波加载参数,滤波频率等,使得二次谐波信 号趋于完整和稳定;调节ROI左右滑块,选择感兴趣区域进行谐波分析, 当"浓度信号"XY坐标图中仅保留二次谐波信号最大峰时,ROI设置 完毕。

在直接测量模式下,需要对背景波形进行保存,以作为对照。将测量光路中的气体移除,吸收波形回复至锯齿波的初始状态。当锯齿波波形稳定后,单击"提取背景"按钮,系统自动对当前的吸收波形进行保存,并以红色曲线加以显示,如下图所示。完成背景采集后,将待测气体放置测试光路中,QCL激光经过气体后,出现吸收波形,如图中的白色曲线所示。对比红色曲线和白色曲线的差异,即可计算出气体的浓度值。

- 4) 开始测量
- 单击"测量"按钮后,开始测量,此时测量按钮变成橙色(高亮显示),测量结果显示 XY 框图和实时浓度 XY 框图中开始显示每个取样点的气体浓度值。平均值显示框内实时显示着测量结果的算术平均值。
- 测量过程中单击"清空"按钮将重置内存中的数据,此时测试不会中断,数据将重新开始统计。
- 测量结束时再次单击"测量"按钮,结束测量,此时测量按钮重新变成灰白 (初始状态)。

5) 保存结果

- 单击"保存"按键,对当前测量结果进行保存操作,保存数据格式默认为TXT
 文件。
- 单击"保存设置"按键,对当前的参数配置进行保存操作。
- 单击"载入设置"按键,在对话框中选择需要载入的配置文件,选择载入后,
 系统自动对参数进行配置。
- 5) 红色 ERROR 灯闪烁时的应对策略
- TEC ERROR:表明激光器温度超过 0~55℃范围,此时 LDC 电流输出将自动保护性关闭。此灯亮起时候请检查使用环境的温度和散热情况。

- LDC ERROR:表明 LDC 输出电流超过保护阈值。通常由电气干扰造成。未 杜绝此情况发生,请注意一下:
 - 在任意一路 OUTPUT 开启时,不要开关其他通道的 TEC 和 LDC 开关。
 - 若需要进行 TEC 和 LDC 的开关操作,请先关闭所有通道的 OUTPUT。

4、系统构成

部件名称	功能	数量	技术特点
QCL	气体检测光源	3 台	功率: 50~100mW 波长:4.53um,5.26um,6.13um 线宽: ≤0.2cm ⁻¹ 调谐范围: ±1cm ⁻¹
激光驱动与调制 (1)	QCL 调谐控制	3 套	电流驱动能力:1A 电流调谐频率:DC~100KHz 调谐方式:电压波形调谐 温度控制:TEC 温控精度:±0.1℃
谐波锁相放大器 	浓度信号谐波提取 与高精度检测	1 套	锁相频率范围: DC-50KHz 模式:包含 DC 和 2f 谐波双模 式
数据采集与信号提取	吸收数据测量	1 套	采样率: ≥100Ksps 输入量程: ±10V 分辨率: 12bit
光纤多波长合成发射系统	激光传输与发射	1根	合束通道:3路 光纤芯径:500um 工作波长:4-12um
红外探测器	光强测量	1 只	波长范围: 1100nm~5900nm 工作模式: TEC 制冷 放大器增益: 10 ⁶ SNR: >1000
IRCELL	测气光路多程反射	1只	等效光程: 3.49 米

成都诺为光科科技有限公司 www.novaphoton.com

			通气量: 38ml 反射材料: 金
系统集成封装结构件	部件固定、光路集 成、样品夹持、仪 器化封装	若干	系统光路构建: 耦合、准直、 反射与收集
光路结构元件	红外光学元件	若干	氟化钙透镜、非球面透镜
测量软件	成分与浓度监控	1套	运行平台:工控机 功能:成分浓度-时间曲线测 量、显示与存储,系统参数设 置。

5、综合指标

- ▶ 气体测量种类: NO, NO₂, N₂O。
- ▶ 测量精度:优于100ppbv。
- ▶ 测量原理: QCLAS 量子级联激光吸收光谱检测。
- ▶ 光机平台:便携紧凑式光机结构,带封装外壳。
- ▶ <u>电气平台:</u>集成激光驱动器、温控器、锁相放大器、数据采集器与信号放大器。
- ▶ <u>软件平台:</u>基于 PC 的工控机平台,具备气体浓度-时间曲线显示,不透光度 显示,数据存储与分析等功能。
- ▶ 仪器化: ALL-IN-ONE 设计,集成度高。
- ▶ 系统供电: AC 220V。

附录: QCLAS 测量原理

1. Lambet-beer 定律

比尔郎伯定律是气体吸收光谱浓度测量的基本原理,适用于所有存在光谱吸收效应的物质浓度检测。

附图1 气体吸收的比尔朗伯定律

如图所示,当一束强度为1₀的光束通过充满待测气体的区域,其波长v下的相关 光强度会因介质分子吸收而衰减。入射光在通过厚度为L的吸收区域后,其出射 光强1满足如下关系式:

 $I(v) = I_0(v) \exp[-a(v)LC] \quad (1)$

其中 I₀(v) 是入射光强, I(v) 出射光强, a(v) 是波长v 下单位浓度单位长度的介质 吸收截面(有时称为吸收系数), L 是吸收路径总光程, C 是待测气体浓度。比 尔朗博定律给出一种通过测量光强变化实现浓度检测的理论基础。在此基础上, 不同的气体成分具有独特的吸收中心峰, 通过红外光谱吸收中心峰来区分不同气 体成分, 就像"指纹"一样将它们分离开, 从而实现一对一成分-浓度检测。气 体的吸收光谱可以通过查找 HITRAN 数据库进行确定。以 H2S 和 SO2 为例, 采 用 7.4um 的 QCL 激光可以有效将两者同时测量出来,并且可以通过约±1cm-1 的波数调节,将两者的吸收峰清晰地分辨出来。 2. QCLAS 谐波测量原理

谐波检测的基本原理是通过频率调制(如正弦调制),使其"扫描"待测特征信 号,并用调制频率或调制频率的倍频信号作为参考信号,通过锁相放大技术,产 生强度正比于待测气体浓度的谐波信号,从而实现浓度检测。谐波检测的理论基 础是傅里叶变换,待测气体的吸收特性可以通过一定的数学模型来描述,例如 Lorentz, Guassian 及 Voigt 线型。当气体的吸收系数已知时,就可以通过数学表 达式分析获得气体浓度。

附图 2 QCLAS 调制扫描与谐波波形

谐波测量原理的数学推导如下:

对 QCL 驱动电流进行正弦调制,其光强和波长会产生相应的调制效应,且与调制注入电流成正比:

$$I'_{0}(v,t) = I_{0}(v,t)[1 + n\sin(\omega t)] \quad (2)$$

 $v = v_0 + v_f \sin(\omega t)$ (3)

其中:n为光强调制系数,v₀为光源未经调制时的中心波长,v_f为波长调制幅度, ω为正弦调制频率系数。

将以上公式(2),(3)带入比尔朗博定律公式(1),同时采用微小量近似(在近红外波段时,光强调制系数和气体吸收系数都很小,满足-a(v)LC□1和n□1),可以得到:

$$I(v,t) = I_0[1 + n\sin\omega t]\exp[-a(v_0 + v_f\sin\omega t)LC]$$

$$\approx I_0[1 + n\sin\omega t][1 - a(v_0 + v_f\sin\omega t)LC]$$

$$\approx I_0[(1 + n\sin\omega t) - a(v_0 + v_f\sin\omega t)LC - n\sin\omega ta(v_0 + v_f\sin\omega t)LC]$$

$$\approx I_0[(1 + n\sin\omega t) - a(v_0 + v_f\sin\omega t)LC]$$
(4)

一个标准大气压下,红外光谱粒子的碰撞展宽起主要作用,可采用归一化 Lorentz 线性来描述气体的吸收系数 a(v),如下所述:

$$a(v) = \frac{a_0}{1 + \left(\frac{v - v_c}{\Delta v}\right)^2} \quad (5)$$

其中 a_0 是纯气体在吸收线中心的吸收截面, v_c 是中心吸收峰, Δv 是吸收线半高全宽。将Lorentz 吸收系数线型带入调谐强度表达式,可得:

$$I(v,t) = I_0 \left[(1+n\sin\omega t) - \frac{a_0 LC}{1 + \left(\frac{v_0 - v_c - v_f \sin\omega t}{\Delta v}\right)^2} \right]$$
(6)

当光源的输出中心波长被精确锁定在气体的吸收峰处时, $v_0 = v_c$,则

$$I(v,t) = I_0 \left[1 + n \sin \omega t - \frac{a_0 LC}{1 + w^2 \sin^2 \omega t} \right]$$
(7)

其中 $w = \frac{v_f}{\Delta v}$ (8)

把公式(7)按傅里叶级数进行展开,可以得到一次谐波(f)和二次谐波项(2f)的 系数如下:

$$I_f = nI_0 \quad (9)$$
$$I_{2f} = -ka_0 LCI_0 \quad (10)$$

其中 $k = \frac{2[2+w^2-2\sqrt{(1+w^2)}]}{w^2\sqrt{(1+w^2)}}$,由于 $w = \frac{v_f}{\Delta v}$ 为一常数,因此k也为一个与吸收

中心峰相关的常数。至此可得出结论:一次谐波信号主要由光强调制引起,大小 正比于光源的平均功率;二次谐波信号的大小与初始光强和气体的浓度有关,提 起二次谐波信号就可以推演气体的浓度信息。此外,随着谐波阶数的提高,谐波 幅度会随之迅速减小,不利于提高检测的信噪比,因此,二次谐波提取技术是 QCLAS 气体浓度检测的主要手段,所采用的方法是利用锁相放大器的2f 谐波检 测原理。

3. QCLAS 的软件测量算法

软件测量算法用于实现2f谐波测量。其功能模块构成如图所示:

软件算法平台

附图 3 QCLAS 谐波提取算法实现

各部分说明如下:

- MFG(Modulation Function Generator): 调制函数发生算法。用于产生谐波检测所需的正弦调制波形,即公式(2),(3)中的sin(*at*)成分。通常QCLAS的MFG 波形包含低频宽幅与高频小信号两种成分,以实现QCL 波长在吸收中心峰两侧的扫描与谐波注入。
- LIA(Lock-In Amplifier): 锁相放大算法。用于实现光强信号(来自于红外探测器)与参考信号(来自于 MFG)的锁相放大与谐波提取,获得公式(10) 描述的谐波幅值。该算法由锁相环、鉴相器与滤波器算法构成,可以实现光强信号中的2f傅里叶展开谐波提取。
- DAQ(Digital AcQuisition):数据采集算法。该算法配合数据采集卡使用,实现2f谐波幅值强度检测,并通过传递函数标定实现浓度值计算。
- HMI(Human Machine Interface): 人机接口软件。用于实现整套 QCLAS 系统的参数设置与信号测控,是最终实现浓度数据显示、分析与存储的面板式软件。在计算机屏幕上进行直观显示,是面向使用者的主要操作界面。